765 research outputs found

    TRACE-derived temperature and emission measure profiles along long-lived coronal loops: the role of filamentation

    Get PDF
    In a recent letter (ApJ 517, L155) Lenz et al. have shown the evidence of uniform temperature along steady long coronal loops observed by TRACE in two different passbands (171 A and 195 A filters). We propose that such an evidence can be explained by the sub-arcsecond structuring of the loops across the magnetic field lines. In this perspective, we present a model of a bundle of six thin parallel hydrostatic filaments with temperature stratification dictated by detailed energy balance and with temperatures at their apex ranging between 0.8 and 5 MK. If analyzed as a single loop, the bundle would appear isothermal along most of its length.Comment: 9 pages, 4 figs, LaTeX text, PostScript figure

    XMM-Newton Observations of Evolution of Cluster X-Ray Scaling Relations at z=0.4-0.7

    Full text link
    We present a spatially-resolved analysis of the temperature and gas density profiles of galaxy clusters at z=0.4-0.7 observed with XMM-Newton. These data are used to derive the total cluster mass within the radius r_500 without assuming isothermality, and also to measure the average temperature and total X-ray luminosity excluding the cooling cores. We derive the high-redshift M-T and L-T relations and compare them with the local measurements. The high-redshift L-T relation has low scatter and evolves as L ~ (1+z)^{1.8\pm0.3} for a fixed T, in good agreement with several previous Chandra and XMM-Newton studies (Vikhlinin et al., Lumb et al., Maughan et al.). The observed evolution of the M-T relation follows M_500 = A T^{3/2} E(z)^{-alpha}, where we measure alpha=0.88\pm0.23. This is in good agreement with predictions of the self-similar theory, alpha=1.Comment: ApJ in press, updated to match the accepted versio

    A massive warm baryonic halo in the Coma cluster

    Get PDF
    Several deep PSPC observations of the Coma cluster reveal a very large-scale halo of soft X-ray emission, substantially in excess of the well known radiation from the hot intra-cluster medium. The excess emission, previously reported in the central region of the cluster using lower-sensitivity EUVE and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled non-thermally, but is consistent with the original scenario of thermal emission from warm gas at ~ 10^6 K. The mass of the warm gas is on par with that of the hot X-ray emitting plasma, and significantly more massive if the warm gas resides in low-density filamentary structures. Thus the data lend vital support to current theories of cosmic evolution, which predict that at low redshift \~30-40 % of the baryons reside in warm filaments converging at clusters of galaxies.Comment: Astrophysical Journal, in pres

    Ion-by-Ion DEM Determination: I. Method

    Full text link
    We describe a technique to derive constraints on the differential emission measure (DEM) distribution, a measure of the temperature distribution, of collisionally ionized hot plasmas from their X-ray emission line spectra. This technique involves fitting spectra using a number of components, each of which is the entire X-ray line emission spectrum for a single ion. It is applicable to high-resolution X-ray spectra of any collisionally ionized plasma and particularly useful for spectra in which the emission lines are broadened and blended such as those of the winds of hot stars. This method does not require that any explicit assumptions about the form of the DEM distribution be made and is easily automated.Comment: This paper was split in two. This version is part I. Part II may be found at astro-ph/050343

    Chandra Observation of M84, Radio Lobe Elliptical in Virgo cluster

    Full text link
    We analyzed a deep Chandra observation of M84, a bright elliptical galaxy in the core of the Virgo cluster. We find that the spatial distribution of the soft X-ray emission is defined by the radio structure of the galaxy. In particular we find two low density regions associated with the radio lobes and surrounded by higher density X-ray filaments. In addition to a central AGN and a population of galactic sources, we find a diffuse hard source filling the central 10 kpc region. Since the morphology of the hard source appears round and is different from that seen in the radio or in soft X-rays, we propose that it is hot gas heated by the central AGN. Finally, we find that the central elemental abundance in the X-ray gas is comparable to that measured optically.Comment: accepted to ApJ Letters, Oct 2000. 5 pages in emulateap

    Origins of the 1/4 keV Soft X-Ray Background

    Full text link
    Snowden and coworkers have presented a model for the 1/4 keV soft X-ray diffuse background in which the observed flux is dominated by a ~ 10^6 K thermal plasma located in a 100-300 pc diameter bubble surrounding the Sun, but has significant contributions from a very patchy Galactic halo. Halo emission provides about 11% of the total observed flux and is responsible for half of the H I anticorrelation. The remainder of the anticorrelation is presumably produced by displacement of disk H I by the varying extent of the local hot bubble (LHB). The ROSAT R1 and R2 bands used for this work had the unique spatial resolution and statistical precision required for separating the halo and local components, but provide little spectral information. Some consistency checks had been made with older observations at lower X-ray energies, but we have made a careful investigation of the extent to which the model is supported by existing sounding rocket data in the Be (73-111 eV) and B bands (115-188 eV) where the sensitivities to the model are qualitatively different from the ROSAT bands. We conclude that the two-component model is well supported by the low-energy data. We find that these combined observations of the local component may be consistent with single-temperature thermal emission models in collisional ionization equilibrium if depleted abundances are assumed. However, different model implementations give significantly different results, offering little support for the conclusion that the astrophysical situation is so simple.Comment: 17 pages, 6 figures, accepted by the Astrophysical Journa

    Smoothed Particle Inference: A Kilo-Parametric Method for X-ray Galaxy Cluster Modeling

    Full text link
    We propose an ambitious new method that models the intracluster medium in clusters of galaxies as a set of X-ray emitting smoothed particles of plasma. Each smoothed particle is described by a handful of parameters including temperature, location, size, and elemental abundances. Hundreds to thousands of these particles are used to construct a model cluster of galaxies, with the appropriate complexity estimated from the data quality. This model is then compared iteratively with X-ray data in the form of adaptively binned photon lists via a two-sample likelihood statistic and iterated via Markov Chain Monte Carlo. The complex cluster model is propagated through the X-ray instrument response using direct sampling Monte Carlo methods. Using this approach the method can reproduce many of the features observed in the X-ray emission in a less assumption-dependent way that traditional analyses, and it allows for a more detailed characterization of the density, temperature, and metal abundance structure of clusters. Multi-instrument X-ray analyses and simultaneous X-ray, Sunyaev-Zeldovich (SZ), and lensing analyses are a straight-forward extension of this methodology. Significant challenges still exist in understanding the degeneracy in these models and the statistical noise induced by the complexity of the models.Comment: 17 pages, 29 figures, ApJ accepte

    Diffuse X-ray emission in spiral galaxies

    Full text link
    We compare the soft diffuse X-ray emission from Chandra images of 12 nearby intermediate inclination spiral galaxies to the morphology seen in Halpha, molecular gas, and mid-infrared emission. We find that diffuse X-ray emission is often located along spiral arms in the outer parts of spiral galaxies but tends to be distributed in a rounder morphology in the center. The X-ray morphology in the spiral arms matches that seen in the mid-infrared or Halpha and so implies that the X-ray emission is associated with recent active star formation. We see no strong evidence for X-ray emission trailing the location of high mass star formation in spiral arms. However, population synthesis models predict a high mechanical energy output rate from supernovae for a time period that is about 10 times longer than the lifetime of massive ionizing stars, conflicting with the narrow appearance of the arms in X-rays. The fraction of supernova energy that goes into heating the ISM must depend on environment and is probably higher near sites of active star formation. The X-ray estimated emission measures suggest that the volume filling factors and scale heights are high in the galaxy centers but low in the outer parts of these galaxies. The differences between the X-ray properties and morphology in the centers and outer parts of these galaxies suggest that galactic fountains operate in outer galaxy disks but that winds are primarily driven from galaxy centers.Comment: 28 pages, 4 figures, to be submitted to Ap

    Bandpass Dependence of X-ray Temperatures in Galaxy Clusters

    Full text link
    We explore the band dependence of the inferred X-ray temperature of the intracluster medium (ICM) for 192 well-observed galaxy clusters selected from the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected region of interest, the X-ray temperature inferred from a broad-band (0.7-7.0 keV) spectrum should be identical to the X-ray temperature inferred from a hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are contributing soft X-ray emission, the temperature of a best-fit single-component thermal model will be cooler for the broad-band spectrum than for the hard-band spectrum. Using this difference as a diagnostic, the ratio of best-fitting hard-band and broad-band temperatures may indicate the presence of cooler gas even when the X-ray spectrum itself may not have sufficient signal-to-noise to resolve multiple temperature components. To test this possible diagnostic, we extract X-ray spectra from core-excised annular regions for each cluster in our archival sample. We compare the X-ray temperatures inferred from single-temperature fits when the energy range of the fit is 0.7-7.0 keV (broad) and when the energy range is 2.0/(1+z)-7.0 keV (hard). We find that the hard-band temperature is significantly higher, on average, than the broad-band temperature. Upon further exploration, we find this temperature ratio is enhanced preferentially for clusters which are known merging systems. In addition, cool-core clusters tend to have best-fit hard-band temperatures that are in closer agreement with their best-fit broad-band temperatures. We show, using simulated spectra, that this diagnostic is sensitive to secondary cool components (TX = 0.5-3.0 keV) with emission measures >10-30% of the primary hot component.Comment: Accepted for publication in Ap
    • …
    corecore